

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

REAL TIME EYE TRACKING AND HAND TRACKING USING

REGULAR VIDEO CAMERAS FOR HUMAN COMPUTER INTERACTION

STATE UNIVERSITY OF NEW YORK AT BINGHAMTON

JANUARY 2011

Final Technical Report

FINAL, INTERIM, ETC.

 ROME, NY 13441 UNITED STATES AIR FORCE  AIR FORCE MATERIEL COMMAND

AFRL-RI-RS-TR-2011-016

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or
corporation; or convey any rights or permission to manufacture, use, or sell any patented
invention that may relate to them.

This report was cleared for public release by the 88th ABW, Wright-Patterson AFB
Public Affairs Office and is available to the general public, including foreign nationals.
Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2011-016 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION
STATEMENT.

FOR THE DIRECTOR:

 /s/ /s/

PETER A. JEDRYSIK JULIE BRICHACEK, Chief
Work Unit Manager Information Systems Division

Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

http://www.dtic.mil

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

January 2011
2. REPORT TYPE

Final Technical Report
3. DATES COVERED (From - To)

February 2008 – July 2010
4. TITLE AND SUBTITLE

REAL TIME EYE TRACKING AND HAND TRACKING USING
REGULAR VIDEO CAMERAS FOR HUMAN COMPUTER INTERACTION

5a. CONTRACT NUMBER
FA8750-08-1-0096

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
N/A

6. AUTHOR(S)

Lijun Yin

5d. PROJECT NUMBER
NASA

5e. TASK NUMBER
NG

5f. WORK UNIT NUMBER
03

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
State University of New York
SUNY Binghamton
4400 Vestal Parkway East
Binghamton NY 13902-6000

8. PERFORMING ORGANIZATION
REPORT NUMBER

 N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RISB
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)
 AFRL/RI

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RI-RS-TR-2011-016

12. DISTRIBUTION AVAILABILITY STATEMENT

Approved for Public Release; Distribution Unlimited. PA#88ABW-2011-0226.
Date Cleared: 21 January 2011.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This Final Technical Report discusses the accomplishments of a research effort to develop a system for real time eye tracking and
hand pointing tracking using regular cameras for human computer interaction. Several novel algorithms for eye detection and eyeball
estimation were implemented, including a new model for eye gaze estimation and eye detection. The system allows for viewing
direction estimation and eye-based control of screen activity. A novel hand pointing estimation and hand feature detection approach
has also been developed. A new approach for hand region detection was designed using Haar-like features, and allow the hand
tracking in two views from two cameras. The detailed hand features are also detected and tracked automatically. The developed
systems can run in real time.

15. SUBJECT TERMS
Human-computer, interaction, eye tracking, gaze estimation, hand tracking, hand gesture tracking,

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

33

19a. NAME OF RESPONSIBLE PERSON

PETER A. JEDRYSIK

a. REPORT

U
b. ABSTRACT

U
c. THIS PAGE

U
19b. TELEPHONE NUMBER (Include area code)

N/A

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

ABSTRACT

Through this project, we have developed a system for real time eye tracking and hand pointing tracking
using regular cameras for human computer interaction. We have proposed and implemented several
novel algorithms for eye detection and eyeball estimation, including a new model for eye gaze
estimation and eye detection. The system allows for viewing direction estimation and eye-based control
of screen activity. A novel hand pointing estimation and hand feature detection approach has also been
proposed and developed. We have designed a new approach for hand region detection using Haar-like
features, and allow the hand tracking in two views from two cameras. The detailed hand features are
also detected and tracked automatically. The developed systems are able to run in real time. We have
demonstrated the system for proof-of-concept during the project meeting in the Air Force Research
Laboratory (AFRL) at Rome on July 6, 2010. Until now, this project has resulted in five papers published
in the top-notch technical conferences.

 Michael Reale, Terry Hung, and Lijun Yin, “Pointing with the eyes: gaze estimation using a
static/active camera system and 3D iris model”, IEEE International Conference on Multimedia
and Expo (ICME 2010), July 2010, Singapore. (15% acceptance rate)

 Kaoning Hu, Shaun Canavan, and Lijun Yin, “Hand pointing estimation for human computer
interaction based on two orthogonal views”, IEEE/IAPR International Conference on Pattern
Recognition (ICPR 2010), August 2010, Istanbul, Turkey.

 Gabriel Yoder and Lijun Yin, “Real-time hand detection and gesture tracking with GMM and
model adaptation", 5th International Symposium on Visual Computing, Dec. 2009. Las Vegas, NV

 Shaun Canavan and Lijun Yin, Dynamic face appearance modeling and sight direction estimation
based on local region tracking and scale-space topo-representation, IEEE International
Conference on Multimedia and Expo (ICME 2009), June 2009. New York, NY (23% acceptance
rate)

 Michael Reale, Terry Hung, and Lijun Yin, “Viewing Direction Estimation Based on 3D Eyeball
Construction for HRI”, IEEE CVPR workshop on Computer Vision for Human Robot Interaction in
conjunction with IEEE International Conference on Computer Vision and Pattern Recognition
(CVPR 2010), June 2010, San Francisco, CA

Thanks to the support of the Air Force Research Laboratory at Rome, NY, two Ph.D. students have been
conducting research in areas of eye tracking and hand tracking successfully. Three Master students have
graduated and have been continuing their Ph.D. research in the Graphics and Image Computing (GAIC)
Laboratory, Department of Computer Science at Binghamton University.

Approved for Public Release; Distribution Unlimited

 i

Table of Contents

Section Page

ABSTRACT ... i

Acknowledgements .. iv

1 Introduction ... 1

2 Eye Tracking: Method and Result .. 3

2.1 Face Detection ... 3

2.2 Eye Detection ... 5

2.3 Iris Detection and Gaze Estimation .. 6

2.3.1 Iris Detection... 7

2.3.2 Gaze Calibration .. 7

2.3.2.1 Stage 1 Calibration (initial estimate) ... 7

2.3.2.2 Stage 2 Calibration (refinement and visual axis offset) ... 9

2.3.3 Gaze Estimation .. 10

2.4 Result of Software Usage ... 13

2.4.1 Calibration .. 13

2.4.2 Gaze Tracking in Action .. 13

3 Hand Tracking: Method and Result ... 14

3.1 Hand Detection .. 14

3.1.1 Hand Skin Region Detection ... 15

3.1.2 Hand Detection Based on Binary Pattern Features .. 16

3.2 Hand Pointing Tracking .. 18

3.3 Mapping to Mouse Cursor Movement .. 19

3.4 Result of Software Usage ... 20

3.4.1 Model Creation .. 20

3.4.2 Calibration.. 20

3.4.3 Hand-Pointing in Action ... 20

4 Conclusion and Future Development .. 21

5 References ... 22

6 List of Symbols/Abbreviations/Acronyms.. 26

Approved for Public Release; Distribution Unlimited

 ii

List of Figures

Figure Page
Figure 1: Eye/Gaze tracking system 3
Figure 2: Face detection procedure: training (a) and testing (b) 4
Figure 3: Sample training data for face detection 5
Figure 4: Sample result: detected face region 5
Figure 5: Sample test images with detected eye locations 6
Figure 6: Sample test video: Top-right frame shows a pair of detected eye locations 6
Figure 7: Stage 1 calibration 8
Figure 8: (a) (left) “Iris disk” concept, (b) (right) Optical vs. visual axis 10
Figure 9: Illustration of iris contour points detection 10
Figure 10: Sample frames of the eye viewing direction (estimated gaze) 13
Figure 11: Hand tracking composition and system setup 14
Figure 12: Top: hand detected; Middle: skin portion; Bottom: hands detected in variable lighting background 16
Figure 13: Hand region detection diagram 16
Figure 14: Image conversion from Cartesian to Polar coordinates 17
Figure 15: Orientation detection using 3x3 blocks 17
Figure 16: Sample frames showing hand regions detected 18
Figure 17: Fourteen landmarks for top view and side view 18
Figure 18: Detected hand regions, tracked points, and the estimated pointing vectors 19
Figure 19: Hand pointing at work 19

Approved for Public Release; Distribution Unlimited

 iii

Acknowledgements

We would like to thank Mr. Peter Jedrysik, Mr. Jason Moore, and Ms. Julie Brichacek of the Air Force Research
Laboratory at Rome, NY for the great support of this project.

Approved for Public Release; Distribution Unlimited

 iv

1 Introduction

The reflexive purpose of seeking knowledge and understanding in the area of human-computer interaction is that
computers may know and understand us. More specifically, the computer should be able to infer what we wish to
see, do, and interact with through our movements, gestures, and expressions in an intuitive and non-invasive way
in contrast to the traditional way of using mouse and keyboard. The human gesture information allows the
computer to refine, correct, defer, or initiate responsive action, offering the user an interactive experience more
evocative of human-to-human communication [1][5].

The objective of this project is to develop an intuitive real time system for eye tracking and hand-pointing tracking,
allowing the computer to track eye gaze directions and hand pointing directions, and to further understand the
point of regard from users’ interaction. During the project period (February 7, 2008 – July 7, 2010), we have
developed algorithms for eye tracking, 3D eyeball based gaze estimation, hand detection, hand tracking, and hand
pointing estimation.

The major contributions of this project are three-fold:

 Unlike the traditional way of eye gaze estimation, we have developed a novel eye tracking and 3D eyeball
based gaze estimation approach in a non-intrusive way without using special cameras.

 Unlike the traditional way of hand tracking from either single view or stereo-vision approach, we have
developed a novel hand detection approach using new features for hand-pointing estimation in two
orthogonal views.

 A proof-of-concept system has been developed and demonstrated in real time. This project has advanced
the state-of-the-art for eye/hand gesture based human-machine interaction in an indoor environment with
an easy setup.

The potential applications for eye/gaze estimation and hand-tracking systems are manifold. To cite a few
examples, the current national and worldwide concern for security (in airports and other areas) would benefit
greatly by the ability to locate, identify, and track the movements, gestures, and expressions of potentially
dangerous persons. Turning our attention to the medical field, disabled (perhaps even completely paralyzed)
patients could control their computers with small head movements, eye gaze inference, blink detection, hand
gesture, and even subtle expression recognition hints and thus allow those previously left out to take advantage of
this age of information and technology. The military, always desirous of highly-responsive equipment, has an
interest in the development of interactive HUDs (Heads Up Displays) that work using hand, head-pose, and eye-
gaze inference for data visualization; further work might even use head and eye movements to pilot both ground
units and aircraft. Moreover, knowledge of view direction and thus the object or area of interest offers insight into
the user's intention and mental focus. Affective state monitoring during simulations could be useful for stress
analysis (e.g., combat simulations that gauge the user's ability to function under pressure). In both military and
commercial applications, fatigue monitoring systems could prevent driving accidents [1][4]. In the education
sector, affective recognition (particularly of interest, boredom, and aggravation) as well as attentive state
monitoring (using eye fixation) could be a part of computerized tutoring systems [3][5]. Moreover, the regular
user could benefit greatly from the ease and comfort of interaction with his or her home PC or TV without even
the proverbial touch of the button; specifically, the game industry would benefit from this increased interactivity,
replacing current interaction mechanisms and/or enriching the experience through judicious responses to
gestures, motion, and expressions. In short, like the introduction of the mouse, increased interactivity through
natural movements, gestures, and affective state changes opens up whole new worlds.

Approved for Public Release; Distribution Unlimited

 1

Following is a brief description of the current state of the art of eye/gaze tracking and hand tracking techniques,
thus justifying the motivation of the new development of this project.

The current eye detection techniques fall into one of five categories [7]: shape-based (which as the name implies
search for certain simple or complex shapes to find the eye) [6][8][9], feature-based (which search for certain eye
features individually) [10][11][12][23][24][25][26][27], appearance-based (which usually find the entire eye region
by comparing with a training set of eye region images)[13][28][29][30], hybrid approaches (which combine the
preceding mechanisms in an attempt to offset the weaknesses of each technique) [14][15][16][17][31], and Non-
visible light-based approaches (which utilize Infra-red light projection for reflective pupil detection)
[32][33][34][35][36]. All existing approaches face the challenges of various lighting conditions, pose changes, and
scale changes. We utilized an eye property in a topographic domain and developed a topographic eye detection
approach to localize the eye position.

The current eye gaze estimation techniques fall into one of two categories [7]: regression-based approaches,
which are also known as interpolation-based approaches. These methods generally use one camera and one
infrared light and map the distance vector between the pupil and glint to screen coordinates (either in a
parametric or non-parametric fashion) [18][19][20][21][22][37][38] and model-based approaches, which are
geometric-based approaches attempting to extract the gaze direction vector
[21][22][38][39][40][41][42][43][44][45]. The existing approaches face challenges of head pose variations and
various imaging conditions. We have developed a 3D-model based approach to estimate the 3D viewing vector
from the 3D eyeball model directly.

The current hand detection and tracking techniques include using multi-colored gloves [55] and depth-aware
cameras [51], or background subtraction [53], color-based detection [50][51], stereo vision based [46][48] or
binary pattern based [49][52] hand feature detection. However, the big challenge remains for accurate hand
detection and tracking due to various hand movements and the undistinguishable hand features of the joint parts.
We have developed a two-orthogonal-view based hand detection and feature tracking approach to address the
issues of pointing gesture detection and point-of-regard (PoG) estimation.

In the following sections, we will describe our system composition and its components for eye/gaze detection and
hand pointing tracking, respectively.

Approved for Public Release; Distribution Unlimited

 2

2 Eye Tracking: Method and Result

The eye tracking system consists of components for face detection, eye tracking/iris detection, and gaze
estimation. It works with a regular camera in a viewing range or combines an active camera to focus on the eye
regions in a certain distance. The system composition is depicted in Figure 1.

Figure 1: Eye/Gaze tracking system

The system first locates the face from a wide-angle camera view as well as a rough approximation of the eye
positions and uses this information to guide a pan-tilt-zoom camera to focus in on the eye area of the detected
face. This allows the user translational freedom relative to the camera, and an adjustment of parameters also
permits varied movement in depth freedom. Our system differs from the majority of other systems in that we do
not use infrared, stereo-cameras, specially-constructed hardware, or specific room setups (i.e. “smart rooms”). In
many conventional cases that the face is within a close viewing range while the active camera moves slowly, we
can simply use a single regular camera for eye tracking and gaze estimation.

2.1 Face Detection

We applied an appearance-driven technique based on the binary pattern features [54] for face detection. To
improve the robustness of the face detector, we have developed a novel, linear-time mechanism to make the
system invariant to variable lighting conditions: all features are scaled by a ratio of the average gray-level intensity
of the training samples over the average gray-level intensity of the current search region. We used the integral
image to efficiently compute feature block intensity levels. The best Haar-like features are selected with Adaboost
[54]; we then used Information Gain in the Gain Ratio as a metric of usefulness.

Like other supervised learning algorithms, the accuracy heavily depends on training samples. For example, the
trained model may not work if the lighting changes dramatically and then cause the false detection. Histogram
Equalization is a good strategy to maintain the original facial structures. However, it needs extra time O(n

2
) to

Approved for Public Release; Distribution Unlimited

 3

retrieve the histogram. In real-time scenario adding O(n
2
) is hard to accept. We propose to take advantage of the

average gray level to achieve this task. Although the histogram may not be available, the middle value is still useful
to represent the region of search. Our assumption is that the region’s histogram is a Gaussian distribution. The
lighting changes will shift the middle value while the shape of the Gaussian distribution will not be altered. Based
on the assumption we can apply an easy as well as effective ratio value for image adjustment:

escanAverag

eragetrainingAv

Gray

Gray
ratio  (1)

Where
escanAveragGray means the gray level of current searching rectangle,

eragetrainingAvGray means the average gray

level of training images. For every rectangle we multiply the ratio to compensate the lighting changes. By doing
this the lighting of local search image is adjusted to the lighting of training sample. This approach has been tested
under our lab environment and the results have been improved as compared to the no-ratio adjustment approach.

Our face detection training and test procedure is illustrated in Figure 2 (a)-(b).

 (a) (b)

 Figure 2: Face detection procedure: training (a) and testing (b)

The sample training images are shown in Figure 3. We tested the program in our lab environment. The corrected
detection rate is 99% among 200 sample data. Figure 4 shows a sample result with a detected face region.

Approved for Public Release; Distribution Unlimited

 4

 Figure 3: Sample training data for face detection

 Figure 4: Sample result: detected face region

2.2 Eye Detection

Once the face is detected, we perform an eye detection program using a so-called topographic feature of eyes,
which has been proposed in our work [56]. The basic idea is to create a terrain map from the gray-scale image
(effectively treating it like a continuous 3D surface) and extracting “pit” locations as pupil candidates. The actual
eye pair is chosen using a Gaussian Mixture Model (GMM) and certain heuristics (e.g. the eye candidates cannot be
vertical). The approximate center of the two detected eye candidates is used as the focus of the pan-tilt-zoom
camera. We do not use the mutual information tracking approach as did [56] and instead detect the eyes once
every time the face is detected in the wide-angle view.

The algorithm has been developed for eye pair detection and tracking using geometric surface labeling and
posterior probability maximization. Given a topographic surface of a face, each pixel is labeled according to its

intensity with respect to its neighboring pixels. Let zyxIyxf ),(),(, we can obtain the Hessian matrix H .

The eigen-values 1λ and 2λ of the Hessian matrix H can be used to detect the terrain types of the pixel. In our

implementation, we label each pixel into one of the 12 terrain types: peak, pit, ridge, ravine, ridge saddle, ravine
saddle, convex hill, concave hill, convex saddle hill, concave saddle hill, slope hill, and flat. The experiment shows
that the eye pupil center exhibits “peak” pattern. As such, any pixel that is labeled as peak point is classified as an
eye center candidate.

Approved for Public Release; Distribution Unlimited

 5

Since the detected face image could have various sizes, we process the images by normalizing to a certain scale,
which keeps the image size constant. In order to ensure the inclusion of true eye centers in the candidate set, we
apply a different set of filters to the grey-level image and derive different labeled terrain maps to extract eye
candidates.

Figure 5: Sample test images with detected eye locations

Figure 6: Sample test video: Top-right frame shows a pair of detected eye locations

In order to locate the eye-pair from the candidate set, we studied the label type distribution of the patches
centered at true eye centers, which are significantly different with that centered at non-eye locations. Thus, in the
areas of the left eye patch, right eye patch and non-eye patch, different label distributions are generated. From
our collected training data, we generated different patches, including true eye-pair patches, eye and non-eye pair
patches, and non-eye pair patches. For each of left eye patch and right eye patch, we built its corresponding
Gaussian model. For the non-eye patches, other Gaussian models with respect to other areas (e.g., nose, mouth,
etc.) were also created. To this end, the program calculates the posterior probability of each patch pair, and finds
the pair that belongs to the eye-pair space. As a result, the pair with the highest probability is found to be the final
target pair. Figure 5 and Figure 6 show some sample results from both test images and test videos. Note that this
step is to detect the approximate locations of eyes. As seen from the sample data, the ‘pit’ location may not be
always found in the center of eye. For detail iris locations for gaze estimation, we need to conduct a further
refinement process in the later stage.

2.3 Iris Detection and Gaze Estimation

After the face region and eye location are detected, the iris location and a set of iris features are to be determined.
Then a calibration procedure is performed for estimating 3D eyeball parameters. The system will search for the
best 3D eyeball position, radius, and visual/optical axis offset for each eye relative to the head position. This is
computed as the average of the 2D gaze points from each eye.

Approved for Public Release; Distribution Unlimited

 6

2.3.1 Iris Detection

We work on the red channel of the image, since the iris (unlike the surrounding skin areas) generally has very low
red intensity values. We search for “highlight positions” on the eye (corresponding to specular reflections off the
iris); these are regions containing enough dark pixels to be considered part of the iris while still having a high
enough standard deviation to contain specular reflection points. To remove distracting points on glasses, we
eliminate specular reflections that are long and thin (unlike iris highlights, which are generally equal in width and
height). We equalize the histogram within the eye region to increase contrast. To determine the proper thresholds
and parameters, we extract information from training video sequences we collected using a pan-tilt-zoom (PTZ)
camera. Finally, we refine our initial iris estimate using a circular template in a very small area around the initial
estimate.

2.3.2 Gaze Calibration

Our calibration procedure has two stages: the first acquires an estimate for the 3D eyeball center and radius, and
the second iteratively refines our initial estimate while also extracting the optical/visual axis offset [58]. Note that
each eyeball is handled independently during calibration.

2.3.2.1 Stage 1 Calibration (initial estimate)

At this point, we can get the 2D iris positions, and we assume the camera’s focal length is known; given a 3D
eyeball radius r, we want to find an estimate for the 3D eyeball center E. Let us consider the camera center as the
origin of a 3D coordinate system and the camera view direction as the z axis. Given a 2D pixel position and the
camera’s focal length, we can get a 3D vector from the camera center through every 3D position that maps to our
given 2D pixel point. This can be done simply by constructing a “world image plane,” a 3D plane which is
perpendicular to the camera’s view axis and is far away enough such that 3D points in the plane have the same x
and y coordinates as their projected 2D points. A 2D pixel point can then be converted to a 3D vector by setting its
z coordinate to be the z depth of the world image plane. We operate under the assumption that, if the user is
looking straight into the camera center, the eyeball center must be somewhere along a 3D vector starting at the
camera center and going through the 2D iris center; that is, the gaze direction goes from the 3D eyeball center E to
the 3D iris center E’ (this vector is known as the “optical axis”). Granted, this is not strictly true, since the correct
gaze direction (called the “visual axis”) is a vector from the fovea (on the back of the eye) through the pupil, and
this visual axis is offset from the optical axis by approximately 4-8° (we will refer to this angular difference as the
optical/visual axis offset). However, we will correct for this in Stage 2.

The user first looks into the camera center and then at a calibration point P whose 3D location is known. This gives
us 2D iris locations m1 and m2, respectively. These points are then converted into normalized unit vectors A and
B. We want to find two points, E (the eyeball center) along vector A and E’ (the iris center) along vector B, such
that the distance between them is r (the radius of the eyeball) and the vector between them points at P. Figure 7
illustrates this idea.

Approved for Public Release; Distribution Unlimited

 7

Figure 7: Stage 1 calibration

Let ta and tb represent the lengths such that Ata = E and Btb = E’; we can then express our first constraint as follows:

rBtAt ba 

 (2)

Point E’ (or Btb) is the point of intersection between B and C (= Ata – P). This is equivalent to the point of
intersection between B and a plane determined by point P and normal N = (A × B × C). So, our second constraint is
as follows:

 BN

PN
tb






 (3)

Given above equations (2) and (3) with two unknowns ta and tb, we can derive the following quartic formula and
solve for ta:

 0
234

 WVtUtTtSt aaaa (4)

where:
 (5)

 (6)
 (7)
 (8)
 (9)

and:

 (10)

 (11)

 (12)

Once we have ta, we can scale A by this value and get a 3D eyeball center estimate for a given radius. Although we
could use a standard eyeball radius, we instead cycle through a range of 1.2cm to 1.3cm (in 1/10

th
 millimeter

increments) and get an eyeball estimate for each radius size. This corresponds to the natural range of eyeball
radius sizes found in humans (1.2cm to 1.3cm). During the calibration procedure, we have the user look into the
camera center first. Then, the user must track (with both the eyes and head) a calibration point moving from one
corner of the screen to the other. A sample is collected for each position of the calibration point, and the second

22

2

2222

2

2

)(2

)(22

ZrW

YZrV

XYrXZBAZU

XYBAYZT

YS











BPBAZ

BABAY

PABAX







)(

)(

)(

Approved for Public Release; Distribution Unlimited

 8

sample point is used to get our B vector (this sample point corresponds to a point very near either the upper-left or
upper-right corner of screen, depending on which calibration step we are performing).

This is done twice:

1. The point moves from the upper-left corner of the screen to the lower-right corner, and these points are used

to calibrate the user’s left eye.

2. The point moves from the upper-right corner of the screen to the lower-left corner, and these points are used

to calibrate the user’s right eye.

We collect 40 calibration points per eye. For each eyeball estimate (and corresponding radius) and each of the
calibration points, we use our gaze estimation approach to determine the estimated point of regard and get its
distance from the true gaze (calibration) point. To increase sensitivity to error, we scale up each distance value to
1/10ths of a millimeter. These error distances are added together, and the eyeball estimate (and radius) with the
smallest error is chosen. Note that this approach assumes that eyeball center (E), 3D iris center (E’), and 3D gaze
point (P) are all coplanar, which may not be true if the user’s head moves during the calibration procedure; thus,
we must adjust our vectors for head rotation and translation before performing our calibration calculations. We
now have our initial 3D eyeball and radius estimate.

2.3.2.2 Stage 2 Calibration (refinement and visual axis offset)

Due to the optical/visual axis offset (as well as user error during calibration), our initial estimates can be off slightly
from their true position. Therefore, we reset the radius to 0.0125 and find the best position and radius using the
Nelder-Mead downhill simplex method. To ensure that the radius values remain reasonable, we add a penalty
term if the radius should be outside of the range 1.2-1.3cm. The distance (in 1/1000s of a millimeter) is cubed and
added to the total error term for a given position/radius estimate. We also add what we call the “optical error.” As
we shall explain later, we use the iris contour points to determine gaze. Intuitively, the optical error corresponds
to whether the iris contour points are arranged in a 3D circular pattern around the estimated gaze direction. Our
gaze estimation procedure assumes that the vector from the eyeball center to each iris contour point has a set
angle from the optical gaze direction (this corresponds to a known dot product value). For each of these iris
contour vectors, the difference between the dot product of each vector with the estimated gaze direction and the
expected dot product value is summed together. For incorrect eyeball positions, some iris contour points will not
intersect with the eyeball sphere; for each missed point, a 1.0 is added to this sum. Finally, this sum is divided by
the total number of iris contour points, and the value is multiplied by 10000 (to give it similar weight as the
distance error).

For each position and radius estimate, we compute the expected iris radius and the visual axis offset. For each
sample frame for the look-into-camera stage, we estimate the optical axis and average dot product by an
extension of our gaze estimation approach. Once the optical axis is computed, the eye rotation pitch and yaw
values can be ascertained, as well as the 3D iris center position. The visual axis is assumed to be the vector from
the iris center to the camera center (the origin), and this vector is stored as a vector offset from the optical axis.
The resulting expected dot product values and visual axes for each sample are averaged, and the final values are
used for gaze estimation hereafter.

At this stage, we have the 3D eyeball center, which can be rotated and translated with head position and pose
information, the 3D eyeball radius, and the visual axis offset.

Approved for Public Release; Distribution Unlimited

 9

2.3.3 Gaze Estimation

For a given frame, we adjust the eyeball center position based on the current head pose and position. Using the
2D iris center, we want to find the iris contour points, map them (and the iris center) to the eyeball sphere,
determine the optical axis, get the visual axis offset (which is dependent on eye rotation only), and compute the
new (3D) iris center from the optical axis (see Figure 8(a) and Figure 8(b) for an illustration). In Figure 8(a), blue
vectors are the “iris contour vectors,” while the red vector is the computed (optical axis) gaze direction.

Figure 8: (a) (left) “Iris disk” concept, (b) (right) Optical vs. visual axis

To get the iris contour points, we perform the following procedure, which is also illustrated in Figure 9.

Figure 9: Illustration of iris contour points detection

1. Define a smaller search region around the iris position and blur the grayscale image with a 5x5 Gaussian filter.

2. Extract gradient magnitudes and directions.

3. Given a normalized 2D vector H that goes from our iris center estimate to the 2D eyeball center, shoot rays Ri

outwards ±125° around H (one ray per degree)

4. For all pixels (within search region) along each ray, compute score:

)5.0),((* ,,,  jiijiji DRdotmscore (13)

where i is the ray index, j is the pixel index, mi,j is the gradient magnitude, and Di,j is the normalized gradient
direction vector (from dark to light pixels).

Approved for Public Release; Distribution Unlimited

 10

5. The highest scoring pixel along each ray is chosen as a potential iris contour point.

6. Use an Active Appearance Model (AAM) that tracks the eye corners and eyelids to filter out erroneous points.

7. If we have over 10 points, break up remaining points into groups.

Here is the group processing procedure:

1. The points are ordered by angle around estimated iris center. For each point, check the 5 points ahead in the

list for the closest neighbor point. If the closest point is more than 1/8
th

 of the search region height away, do

not give this point a neighbor.

2. Form initial groups based on neighbor chains.

3. Remove all groups with less than 7 points.

4. For each remaining group, recursively fit the points to a line. If any point is more than 30% of the current

line’s length away, split this group and repeat the procedure. If any group has 5 points or less, stop processing

this group.

The AAM tracks the eye corners, the top and bottom eyelid points, and the iris center. To filter out iris
contour points that may be part of the eyelids:

1. Create Catmull-Rom splines for the eyelid perimeter.

2. For each iris contour point, compute the vector from the AAM iris center to the contour point and get its

length L.

3. Determine the intersection point of this vector with the eyelid splines and get the length of this vector S.

4. Get D = S - L.

5. If D is less than 3.0, this point is an eyelid point and should not be used. Otherwise, keep the point.

To remove eye corner points:

1. Find the corner which the iris is closest to.

2. If any contour point is within 25% of the distance between the eye corners of the chosen eye corner, remove

this point.

We map 2D iris contour points to the eyeball sphere by converting them into 3D perspective vectors and
intersecting them with the current eyeball sphere. We refer to a normalized vector going from the eyeball center
to one of those intersection points as an “iris contour vector” Ci. Before we can perform gaze estimation, we need
to estimate the 3D iris radius on the eyeball (or rather, the average dot product between the optical axis and each
Ci). We use the information extracted during the look-into-camera phase of the calibration procedure; note that

Approved for Public Release; Distribution Unlimited

 11

an approximation of the optical gaze vector can be extracted by intersecting the 2D iris center with the eyeball
sphere, subtracting the eyeball center, and normalizing the result, giving us vector V. We get the average of the
dot products (aveDot) between V and each Ci. In this way, we define an “iris disk.” Figure 8(a) illustrates this
concept. This unique approach of mapping 2D contour points directly onto the 3D eyeball sphere allows for
efficient detection of the gaze direction.

For gaze estimation, we first detect the iris center and contours and map these points to the eyeball sphere to
ultimately get V and all Ci vectors, respectively. We want to find the optical axis G such that 1) it is parallel to V and
2) the dot product of G and each Ci is aveDot. Thus, we solve the following linear equations:







































































1

...

1

...

.........

.........

000

aveDot

aveDot

G

G

G

VVV

VVV

CCC

CCC

Z

Y

X

ZYX

ZYX

Z

N

Y

N

X

N

ZYX

 (14)

Note that aveDot, V, and the constant 1 are repeated in their respective matrices N times, i.e., once for each
contour vector.

We have found that repeating this procedure, using the new iris center estimate from the previous iteration, can
give us more accurate results. So, we iterate our approach until either the distance between the endpoints of the
normalized G vectors are within 1e-8 of each other or until we go through 20 iterations. To estimate the average
dot product from the look-into-camera samples, we extend our approach like so:















































































1

...

1

0

...

0

0

............

0

1

............

1000

aveDot

G

G

G

VVV

VVV

CCC

CCC

Z

Y

X

ZYX

ZYX

Z

N

Y

N

X

N

ZYX

 (15)

We do not iterate this procedure, however. To get the visual axis, we get the pitch and yaw rotation values from
the optical axis G and rotate the visual axis offset accordingly. We intersect the optical axis with the eyeball sphere
to get a new estimate for the 3D iris center, which we use for our gaze starting point. The visual axis is used as our
final gaze direction.

Once we have our current 3D eyeball position and gaze vector, we must map this information to screen
coordinates. We assume that the screen’s 3D position, size, and orientation are already known, and so the
mapping is a simple ray-plane intersection. We use the average position of the two 2D gaze estimates as our final
estimated point-of-regard. Figure 10 illustrates several examples from a real time video tracking sequence.

Approved for Public Release; Distribution Unlimited

 12

Figure 10: Sample frames of the eye viewing direction (estimated gaze)

2.4 Result of Software Usage

2.4.1 Calibration

The eye tracking system is set up in an indoor environment. The user should go through a calibration procedure:

1. The user must look into the camera lens;

2. Then look at the upper-left corner of the screen (ideally rotating the head towards that point). A point will

move across the screen from the upper-left to the lower-right hand side of the screen, and the user must track

this point with his/her head and eyes.

3. Same procedure as step 2, only the point will go from the upper-right corner to the lower-left corner.

The system will then search for the best 3D eyeball position, radius, and visual/optical axis offset for each eye
relative to the head position. Once this is complete, a cursor will move across the screen indicating the estimated
gaze point. This is computed as the average of the 2D gaze points from each eye, and each individual gaze point is
computed using the procedure as follows:

The eyeball head position is used as the starting point of a vector, while the estimated eyeball rotation vector
determines the “gaze” direction. The intersection point of this vector with the screen is used as the cursor
position. The center of the screen is subtracted from the intersection point, the resulting vector is projected onto
the screen’s x and y axes, and the values are scaled to pixel coordinates.

2.4.2 Gaze Tracking in Action

The program runs in the Visual Studio environment. Once the AAM tracker initializes, the iris centers as well as the
eyelid splines will be drawn on the face. Once the calibration procedure is performed, the 3D eyeball centers and
the visual gaze direction for each eye will be displayed. Also, a “cursor” will be displayed at the estimated gaze
position.

If desired, a “gaze grid” can be displayed; if the cursor is within one of the gray bricks, the brick will be highlighted.
The program allows reset of the face tracking and AAM tracking in case of loss of track. The gaze tracking program
runs in about 15 frames per second with a video resolution of 640X480 pixels per frame.

Approved for Public Release; Distribution Unlimited

 13

3 Hand Tracking: Method and Result

We setup two regular cameras in orthogonal positions, one on the top of the user, and the other to the left side.
Figure 11 shows the system composition. We proposed a hand-image warping approach to transform the original
hand image to a polar-coordinate plane in order to make the hand detection invariant to orientation. We applied
two cascade detectors based on binary pattern features and AdaBoost for two views’ hand region detection. Then
we used the Active Appearance Model (AAM) [47] to track the finger point to identify the direction of hand
pointing. There is correspondence between the points in the top and side views. Using this correspondence
between the points allows us to infer the (x, y, z) coordinates of those points. Once we have the 3D coordinates we
use two points along the finger to draw a vector in 3D space, resulting in the orientation of the finger. Following
sections will describe each component individually.

Figure 11: Hand tracking composition and system setup

3.1 Hand Detection

Hand region detection is the first step towards the pointing direction estimation. We have developed two different
methods to detect hand regions: hand skin region detection [61] and Haar-like binary pattern feature detection
[60]. Among these two approaches, the second approach shows better performances than the first one. We have
integrated the second approach into the final hand-pointing system. Here both approaches are reported in the
following sub-sections.

Top View Side View

Hand region detector

Hand region Hand region

Hand pointing tracking

2D (x, z) 2D (y, z)

3D features (x, y, z) &

pointing vector

Approved for Public Release; Distribution Unlimited

 14

3.1.1 Hand Skin Region Detection

The complex nature of the range of colors which constitute skin tones make it difficult to establish a firm set of
values for image segmentation, and many types of methods for handling skin detection have been proposed.
Variations in lighting further complicate the process of distinguishing skin from background colors. For these
reasons, it is desirable to use machine learning approaches to establish a classifier which could accurately classify
known examples of each class as well as provide reasonable guesses for colors not found in the training data.

A Bayesian classifier provides a simple, robust classification with a built-in classification confidence and can be
used if a probability distribution function (PDF) can be established for each class. Since the actual PDF for the skin
and background classes is not known, it is necessary to design an approximation of the PDF based on known data.
A Gaussian Mixture Model (GMM) provides such an approximation. Therefore, the basis for hand detection is a
Gaussian Mixture Model (GMM) based classifier for distinguishing skin colored pixels from background pixels. This
is combined with a connected component analysis system in order to locate blocks of the image which contain
significant amounts of skin colored pixels.

Our skin tone pixel segmentation uses a single Bayesian classifier based on the GMMs determined from a static set
of training data. The classifier is fully computed ahead of time by a training program which processes a set of
example images to extract the user-specified color components and train the GMMs accordingly. Once the training
program has completed, the classifier remains fixed, and can be used for a separate hand detection application.

The features that were used by the classifier were taken from the YIQ color space. Like the HSV color space, YIQ
consists of one component (Y) which corresponds to overall brightness, while the other two components (IQ)
provide the color. By discarding the brightness component from the YIQ data, a certain degree of lighting
invariance was gained.

To fit the specifications of a GMM to a set of data, we establish a fixed number of Gaussians for the GMM, and
then fit each of the Gaussians using the classic Expectation-Maximization (EM) algorithm [57][58]. In order to
locate potential hand regions in images, our system first uses a Bayesian classifier to identify skin tone areas. In
initial implementations, every pixel of the image was processed by the classifier, however this proved to be too
time consuming for real-time processing. In its current incarnation, the hand detector divides the image into a grid
of blocks which are 8x8 pixels in size. The feature values of the pixels within each block are averaged, and these
mean values are fed into the classifier. The resulting classification is then applied to all pixels within the block. The
size of the block was empirically selected based on the criteria that it would sufficiently reduce processing time
and that it would evenly divide common image sizes.

Once the Bayesian classifier has identified each block as either skin or background (essentially producing a down-
scaled classification image), the results are scanned for connected regions consisting of blocks with a skin
confidence of at least 50%. We applied a skin-pixel based region-growing approach to detect the connected
components of skin-regions. Connected regions whose width or height is below an empirically derived threshold
are assumed to be false positives and are discarded. Any remaining connected regions are presumed to be hands.
Some examples are shown in Figure 12. The top row shows video frames with the hand detected. The middle row
shows the skin portion of the top row. The bottom row shows video frames with hands detected in a variable
lighting background.

Approved for Public Release; Distribution Unlimited

 15

Figure 12: Top: hand detected; Middle: skin portion; Bottom: hands detected in variable lighting background

We tested this approach with the collected static hand images and hand videos. Although 90% of images show the
correct hand segmentation, this approach is very sensitive to color tone of hand and background color, it is not
selected to be used for the hand pointing system.

3.1.2 Hand Detection Based on Binary Pattern Features

Motivated by the success of face detection developed by Viola-Jones using Haar-like features and an AdaBoost
cascade detector, we extended the features to hand regions detection for the pointing gesture [60]. Figure 13
shows the diagram of the hand region detection procedure.

Figure 13: Hand region detection diagram

Some existing work has applied pre-designed binary patterns for hand detection successfully. However, the
detection is still sensitive to the variation of hand orientations. To improve the orientation invariance to hand
region detection, we warp the hand image from Cartesian coordinates to polar-radial coordinates. To do so, we

Training

Images

Working

images

Hand region

normalization

(27x27 pixels)

Cartesian to

Polar

Applying

binary patterns

AdaBoostCascade

detector

Training

Input image Working

image

Cascade

detector

Candidate(s)

Detection

Approved for Public Release; Distribution Unlimited

 16

use the center of the window as a pole (“o”), and the polar angle (θ) at 0 degree is determined by the position of
the wrist (Figure 14). The radius (r) of the polar axis is determined by the window size.

Since a hand is always connected with its corresponding wrist, in order to estimate the wrist position, we divide
the 27x27 hand image into 3x3 blocks as shown in Figure 15.

The fist is contained in the central block, and the wrist is located at one of the surrounding 8 blocks. Due to the
strong correlation of skin colors between hand and wrist, the average color of the block containing the wrist is the
most similar to the average color of the central block among the 8 surrounding blocks. Then we are able to identify
the position of the wrist by comparing the average color of the 8 blocks and the central block.

After the position of the wrist is determined, we use this position as the 0 degree polar coordinate, and convert
the image from Cartesian (x, y) to Polar coordinates (θ, r). Figure 14 shows examples of the image warping. As we
can see, the converted images have similar appearances regardless of hand orientations rotated in the image
plane.

Figure 14: Image conversion from Cartesian to Polar coordinates

Figure 15: Orientation detection using 3x3 blocks

After the image conversion, we apply four black-white patterns to the warped image in (θ, r) coordinates. Our
hand detector performs following three operations: (1) integral image generation, (2) Haar-like features
generation using the above binary patterns, and (3) building cascade detector using AdaBoost. Figure 16 shows an
example of hand detection.

Approved for Public Release; Distribution Unlimited

 17

Figure 16: Sample frames showing hand regions detected

3.2 Hand Pointing Tracking

Given the detected hand regions, we then track hand features in the limited search regions. We apply an Active
Appearance Model (AAM) [47] to track 14 pre-defined feature hand-points on both top view and side view. A set
of landmarks selected for the training set represent the shape of the object to be modeled. These landmarks are
represented as a vector and principal component analysis is applied to them. This can be approximated with the
following formulas for both shape and texture:

ssbPxx  (16)

ggbPgg  (17)

In the shape formula (16), x is the mean shape, Ps represents the modes of variation, and
sb defines the shape

parameters. In the texture formula (17), g is the mean gray level, Pg represents the modes of variation, and
gb

defines the grey-level parameters.

We use AAMs to create a statistical model of the hand from two orthogonal views via a simultaneous capture. We
create a separate appearance model for each view, and track the hand in two views separately. To create the hand
shape and gray-level models we chose 14 landmarks for the training set images. These landmarks for the top and
side views can be seen in Figure 17. Note that the hand detection of the previous stage allows us to narrow down
the search region for fitting our model to the hand, thus reducing the time for finding a correct fit.

Figure 17: Fourteen landmarks for top view and side view

Approved for Public Release; Distribution Unlimited

 18

In Figure 18 sampled frames of a testing video show detected hand regions (green blocks), tracked points (blue
dots), and the estimated pointing vectors (red lines) from a top view (upper row) and a side view (lower row).

Figure 18: Detected hand regions, tracked points, and the estimated pointing vectors

3.3 Mapping to Mouse Cursor Movement

Since the two views of hands are tracked separately with different models, we are able to create the best fit for
the corresponding hand in each frame. There is correspondence between multiple landmarks in the separate
views. Those landmarks, most notably on the finger, allow us to infer the 3D coordinates from 2D coordinates, and
infer the 3D orientation of the finger. For one point that has correspondence between the two models, we can use
the top view as the (x, z) coordinate and the side view as the (z, y) coordinate. We can then combine both of the
views to infer the (x, y, z) coordinate for that tracked landmark. We use the z coordinate from the top view.

Once we have the 3D coordinates of the tracked points we take two points on the finger that are “connected by a
line” to create a vector that points in the direction of the finger. The two points selected are near the top and
bottom of the pointing finger. These were selected as they appear to give us the most reliable vector in
determining the orientation of the finger. Figure 18 shows some samples of line pointing from the finger.

Since cursor movement even with a mouse is all relative (rather than absolute) motion, we normalize the pointing
vector and map the x and y components directly onto the screen. When the AAM first initializes, we record the
starting z position of the hand from the top view; if the user moves his/her hand forward by a certain distance
from that starting z position, we interpret this as a mouse click. Figure 19 shows an example for hand pointing at
work.

Figure 19: Hand pointing at work

Approved for Public Release; Distribution Unlimited

 19

3.4 Result of Software Usage

The system is set up with a display screen or projector, and two cameras installed in two orthogonal views: one is
mounted on the ceiling and one is placed on the left-side of the user. The program is run from command line (for
example: track user [name] mode [calibration/running].)

3.4.1 Model Creation

For the system to work properly, separate models are needed for each view. The top-hand and side-hand AAM
models need to be separated. A program will collect users’ hand data for creating AAM models for training. The
training process could use a single person’s data or a group of people’s data. Currently, the person-dependent
training/test is better than the person-independent training/test.

3.4.2 Calibration

To calibrate the system the user must point to the middle of the screen, top middle, left, bottom middle, and right
sides of the screen. These can be done in any order. Once the user is pointing to that portion of the screen the
following key presses are used to calibrate that point.
1. C – center

2. Up key – top middle

3. Down key – bottom middle

4. Left key – left

5. Right key – right

The program will save a calibration file to the machine so that the system will read in upon starting up.

3.4.3 Hand-Pointing in Action

For the system to work properly, the system assumes the subject is performing hand-pointing gesture, and the
hand is within the two cameras’ viewing ranges. The user will perform pointing actions after the hand features are
detected at the beginning. The pointing cursor will show on the screen along the finger’s movement. The “push”
action will highlight the region of selection. The pointing tracking program runs in about 15 frames per second
with a video resolution of 640X480 pixels per frame.

Approved for Public Release; Distribution Unlimited

 20

4 Conclusion and Future Development

By the end of this project, we have developed a proof-of-concept system for eye/gaze tracking and hand-pointing
tracking. Such a system will facilitate the development of an advanced user interface for applications of data
visualization, human machine/robot interaction, computer file system browsing, and so on. We will integrate the
two components into a uniform framework through the combination of two gestures for human computer
interaction in order to improve their reliability, usability, and flexibility. For the future development of the existing
system, we will consider extending this project in the following aspects:

 We will use non-orthogonal cameras with a more flexible setup to address the pointing estimation issue.

 We will also refine the new algorithms for testing in the various imaging conditions in a certain distance.

 We will further design a smart-room system with multiple cameras setup (e.g., 8 cameras) in order to address
the issues of arbitrary view and occlusion issues.

 We will develop a more intelligent interaction system by exploring body gestures and facial expression
gestures with the 8-camera system.

 We will design and develop a state-of-the-art visualization system with a human-centered interface (e.g., 3D
file system structure and 3D file/scene visualization tool) by utilizing multi-modal modalities, including head,
pose, eye, expressions, hand gesture, body gesture, voice, etc.

Approved for Public Release; Distribution Unlimited

 21

5 References

[1] Zeng, Z., Pantic, M., Roisman, G.I., Huang, T.S. “A Survey of Affect Recognition Methods: Audio, Visual, and
Spontaneous Expressions,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 31, no. 1, pp.
39-58, January 2009.

[2] Valstar, M. F., Pantic, M., Ambadar, Z., and Cohn, J. F. “Spontaneous vs. Posed Facial Behavior: Automatic
Analysis of Brow Actions,” Proceedings of the 8th international Conference on Multimodal interfaces (ICMI
'06, Banff, Alberta, Canada), New York, NY, pp 162-170, November 2006.

[3] Kapoor, A., Burleson, W., and Picard, R. W. “Automatic Prediction of Frustration,” International Journal of
Human-Computer Studies, vol. 65, no. 8, pp 724-736, August 2007.

[4] Ji, Q., Lan, P., and Looney, C., “A Probabilistic Framework for Modeling and Real-Time Monitoring Human
Fatigue,” IEEE Systems, Man, and Cybernetics Part A, vol. 36, no. 5, pp. 862-875, 2006.

[5] Cowie, R., Douglas-Cowie, E., Tsapatsoulis, N., Votsis, G., Kollias, S., Fellenz, W., and Taylor, J.G., “Emotion
Reognition in Human-Computer Interaction,” IEEE Signal Processing Magazine, pp. 32-80, Jan. 2001.

[6] Valenti, R., Yucel, Z., and Gevers, T., “Robustifying Eye Center Localization by Head Pose Cues,” IEEE Workshop
on Computer Vision and Pattern Recognition (CVPR'09), pp 612-618, 20-25 June 2009.

[7] Hansen, D. and Ji, Q., "In the Eye of the Beholder: A Survey of Models for Eyes and Gaze," IEEE Transactions on
Pattern Analysis and Machine Intelligence, 23 Jan. 2009.

[8] Li, D., Winfield, D., and Parkhurst, D.J., “Starburst: A Hybrid Algorithm for Video-Based Eye Tracking Combining
Feature-Based and Model-Based Approaches,” Proceedings of the Vision for Human-Computer Interaction
Workshop, IEEE Computer Vision and Pattern Recognition Conference, pp 79-79, 2005.

[9] Yuille, A., Hallinan, P., and Cohen, D., “Feature Extraction from Faces Using Deformable Templates,”
International Journal of Computer Vision, Volume 8, Issue 2, pp 99-111, 1992.

[10] Yingli Tian, Kanade, T., and Cohn, J.F., “Dual-State Parametric Eye Tracking,” Proceedings of the 4th IEEE
International Conference on Automatic Face and Gesture Recognition, pp 110-115, 2000.

[11] Vezhnevets, V. and Degtiareva, A., “Robust and Accurate Eye Contour Extraction,” Proceedings of Graphicon,
pp 81-84, 2003.

[12] Yen-Wei Chen and Kubo, K., “A Robust Eye Detection and Tracking Technique using Gabor Filters,”
Proceedings of the Third International Conference on International Information Hiding and Multimedia Signal
Processing (IIH-MSP 2007), pp 109-112, 2007.

[13] Peng Wang, Green, M.B., Ji, Q., and Wayman, J., “Automatic Eye Detection and Its Validation,” IEEE Workshop
on Computer Vision and Pattern Recognition (CVPR'05), pp 164-164, June 2005.

[14] Xie, X., Sudhakar, R., and Zhuang, H., “On Improving Eye Feature-Extraction using Deformable Templates,”
Pattern Recognition, Volume 27, Issue 6, pp 791-799, June 1994.

[15] Xie, X., Sudhakar, R., and Zhuang, H., “A Cascaded Scheme for Eye Tracking and Head Movement
Compensation,” IEEE Transactions on Systems, Man, and Cybernetics, Part A, Volume 28, Issue 4, pp 487-490,
July 1998.

[16] Hansen, D., Hansen, J.P., Nielsen, M., Johansen, A.S., and Stegmann, M.B., “Eye Typing using Markov and
Active Appearance Models,” IEEE Workshop on Applications on Computer Vision, pp 132-136, 2003.

[17] Rodrigues Maia, J.G., de Carvalho Gomes, F., de Souza, O., “Automatic Eye Localization in Color Images,”
Computer Graphics and Image Processing, 2007, SIBGRAPHI 2007, XX Brazilian Symposium on, pp 195-204,
October 2007.

Approved for Public Release; Distribution Unlimited

 22

[18] Merchant, J., Morrissette, R., and Porterfield, J. L., “Remote Measurement of Eye Direction Allowing Subject
Motion Over One Cubic Foot of Space,” IEEE Transactions on Biomedical Engineering, Volume 21, Issue 4, pp
309-317, July 1974.

[19] Jr. White, K. P., Hutchinson, T.E., and Carley, J.M., “Spatially Dynamic Calibration of an Eye-Tracking System,”
IEEE Transactions on Systems, Man, and Cybernetics, Volume 23, Issue 4, pp 1162-1168, 1993.

[20] Guestrin, E. and Eizenman, M., “General Theory of Remote Gaze Estimation using the Pupil Center and
Corneal Reflections,” IEEE Transactions on Biomedical Engineering, Volume 53, Issue 6, pp 1124-1133, 2006.

[21] Ji, Q. and Zhu, Z., “Eye and Gaze Tracking for Interactive Graphic Display,” Proceedings of the 2nd Interational
Symposium on Smart Graphics, pp 79-85, 2002.

[22] Zhu, Z., Ji, Q., and Bennett, K.P., “Nonlinear Eye Gaze Mapping Function Estimation via Support Vector
Regression,” 18th International Conference on Pattern Recognition (ICPR'06), pp 1132-1135, 2006.

[23] Herpers, R., Michaelis, M., Lichtenauer, K., and Sommer, G., “Edge and Keypoint Detection in Facial Regions,”
International Conference on Automatic Face and Gesture-Recognition, pp 212-217, 1996.

[24] Reinders, M., Koch, R., and Gerbrands, J., “Locating Facial Features in Image Sequences using Neural
Networks,” Proceedings of the Second International Conference on Automatic Face and Gesture Recognition
(FG'96) pp 230, 1996.

[25] Feng, G.C., and Yuen, P.C., “Multi-Cues Eye Detection on Gray Intensity Image,” Pattern Recognition, Volume
34, Issue 5, pp 1033-1046, May 2001.

[26] Kawato, S. and Tetsutani, N., “Detection and Tracking of Eyes for Gaze-Camera Control,” Proceedings of the
15th International Conference on Vision Interface, Volume 22, Issue 12, pp 1031-1038, October 2004.

[27] Kawato, S. and Tetsutani, N., “Real-Time Detection of Between-the-Eyes with a Circle Frequency Filter,”
Proceedings of Asian Conference of Computer Vision 2002, Volume 2, pp 442-447, 2002.

[28] Hallinan, P.W., “Recognizing Human Eyes,” SPIE Proceedings, Vol. 1570: Geometric Methods in Computer
Vision, pp 212-226, 1991.

[29] Pentland, A., Moghaddam, B., and Starner, T., “View-Based and Modular Eigenspaces for Face Recognition,”
Proceedings of the IEEE Conference On Computer Vision and Pattern Recognition (CVPR'94), pp 84-91, June
1994.

[30] Huang, J. and Wechsler, H., “Eye Detection using Optimal Wavelet Packets and Radial Basis Functions (RBFs),”
International Journal of Pattern Recognition and Artificial Intelligence, Volume 13, Issue 7, pp 1009-1026,
1999.

[31] Ishikawa, T., Baker, S., Matthews, I., and Kanade, T. “Passive Driver Gaze Tracking with Active Appearance
Models,” Proceedings of the 11th World Congress on Intelligent Transportation Systems, October 2004.

[32] Ji, Q. and Yang, X., “Real-Time Eye, Gaze, and Face Pose Tracking for Monitoring Driver Vigilance,” Real-Time
Imaging, Volume 8, Issue 5, pp 357-377, 2002.

[33] Nguyen, K., Wagner, C.., Koons, D., and Flickner, M., “Differences in the Infrared Bright Pupil Response of
Human Eyes,” Proceedings of the Symposium on Eye Tracking Research & Applications (ETRA'02), pp 133-138,
2002.

[34] Zhu, Z., Ji, Q., and Fujimura, K., “Combining Kalman Filtering and Mean Shift for Real Time Eye Tracking,”
Proceedings of the 16th International Conference on Pattern Recognition (ICPR'02), Volume 4, pp 318-321,
2002.

[35] Reisfeld, D. and Yeshurun, Y., “Robust Detection of Facial Features by Generalized Symmetry,” Proceedings of
the 11th International Conference on Pattern Recognition, pp 117-120, 1992.

[36] Chau, M., and Betke, M. 2005. “Real Time Eye Tracking and Blink Detection with USB Cameras,” Tech. Rep.
2005-12, Boston University Computer Science.

Approved for Public Release; Distribution Unlimited

 23

[37] Kolakowski, S. and Pelez, J., “Compensating for Eye Tracker Camera Movement,” Proceedings of the 2006
Symposium on Eye Tracking Research & Applications (ETRA'06), pp 79-85, 2006.

[38] Zhu, Z., and Ji, Q., “Novel Eye Gaze Tracking Techniques under Natural Head Movement,” IEEE Transactions on
Biomedical Engineering, Volume 54, Issue 12, pp 2246-2260, 2007.

[39] Villanueva, A. and Cabeza, R., “Models for Gaze Tracking Systems,” Journal on Image and Video Processing,
Volume 2007, Issue 3, Article No. 4, 2007.

[40] Yoo, D.H. and Chung, M.J., “A Novel Non-Intrusive Eye Gaze Estimation using Cross-Ratio under Large Head
Motion,” Computer Vision and Image Understanding, Volume 98, Issue 1, pp 25-51, April 2005.

[41] Coutinho, F.L., and Morimoto, C.H., “Free Head Motion Eye Gaze Tracking using a Single Camera and Multiple
Light Sources,” 19th Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPHI'06), pp
171-178, October 2006.

[42] Kang, J., Guestrin, E., and Eizenman, E., “Investigation of the Cross-Ratios Method for Point-of-Gaze
Estimation,” IEEE Transactions on Biometical Engineering, Volume 55, Issue 9, pp 2293-2302, September 2008.

[43] Boening, G., Bartl, K., Dera, T., Bardins, S., Schneider, E., and Brandt, T., “Mobile Eye Tracking as a Basis for
Real-Time Control of a Gaze Driven Head-Mounted Video Camera,” Proceedings of the 2006 Symposium on
Eye Tracking Research & Applications (ETRA'06), pg 56-56, 2006.

[44] Kar-Han Tan, Kriegman, D.J., and Ahuja, N., “Appearance-Based Eye Gaze Estimation,” Proceedings of Sixth
IEEE Workshop on Applications of Computer Vision (WACV'02), pp 191-195, 2002.

[45] Wang, J.G., Sung, E., and Venkateswarlu, R. “Estimating the Eye Gaze from One Eye,” Computer Vision and
Image Understanding, Volume 98, Issue 1, pp 83-103, April 2005.

[46] C. Colombo et al., Visual capture and understanding of hand pointing actions in a 3-D environment, IEEE Trans.
on SMC-B 33(4), 2003. pp. 677-686.

[47] T. Cootes, G. Edwards, and C. Taylor. Active appearance models. IEEE PAMI, 23(6): 681-685, 2001.

[48] N. Jojic et al, Detection and estimation of pointing gestures in real-time stereo sequences, In IEEE FGR’00.

[49] M. Kölsch and M. Turk. Analysis of rotational robustness of hand detection with a viola-jones detector. ICPR
2004.

[50] M. Lee, D. Weinshall, et al. A computer vision system for on-screen item selection, IEEE CVPR 2001.

[51] C. Manders, F. Farbiz, et al. Robust hand tracking using a skin tone and depth joint probability model. FGR,
2008.

[52] T. Nguyen, N. Binh, and H. Bischof. An active boosting-based learning framework for real-time hand detection.
IEEE FGR, 2008.

[53] A. Utsumiy, et al, Hand detection and tracking using pixel value distribution model for multiple-camera-based
gesture interactions. IEEE CVPR, 2001.

[54] P. Viola and M. Jones. Robust real-time face detection, International J. of Computer Vision 57(2)137–154,
2004.

[55] R. Wang and J. Popovic, Real-time hand-tracking with a color glove, SIGGRAPH 2009.

[56] J. Wang, L. Yin, and J. Moore, “Using geometric property of topographic manifold to detect and track eyes for
human computer interaction”, ACM TOMCCAP, vol.3, no. 4, pp. 1-19, Dec. 2007.

[57] Bilmes, J.A.: A gentle tutorial of the em algorithm and its application to parameter estimation for gaussian
mixture and hidden markov models. Technical Report TR-97-021, International Computer Science Institute and
Computer Science Division U.C. Berkeley, Berkeley CA (1998)

Approved for Public Release; Distribution Unlimited

 24

[58] Paalanen, P.: Bayesian classification using gaussian mixture model and EM estimation: implementation and
comparisons. Information Technology Project (2004)

[59] Michael Reale, Terry Hung, and Lijun Yin, “Pointing with the eyes: gaze estimation using a static/active camera
system and 3D iris model”, IEEE International Conference on Multimedia and Expo (ICME 2010), July 2010,
Singapore. (15% acceptance rate)

[60] Kaoning Hu, Shaun Canavan, and Lijun Yin, “Hand pointing estimation for human computer interaction based
on two orthogonal views”, IEEE/IAPR International Conference on Pattern Recognition (ICPR 2010), August
2010, Istanbul, Turkey.

[61] Gabriel Yoder and Lijun Yin, “Real-time hand detection and gesture tracking with GMM and model
adaptation", 5th International Symposium on Visual Computing, Dec. 2009. Las Vegas, NV

[62] Shaun Canavan and Lijun Yin, Dynamic face appearance modeling and sight direction estimation based on local
region tracking and scale-space topo-representation, IEEE International Conference on Multimedia and Expo
(ICME 2009), June 2009. New York, NY (23% acceptance rate)

[63] Michael Reale, Terry Hung, and Lijun Yin, “Viewing Direction Estimation Based on 3D Eyeball Construction for
HRI”, IEEE CVPR workshop on Computer Vision for Human Robot Interaction in conjunction with IEEE
International Conference on Computer Vision and Pattern Recognition (CVPR 2010), June 2010, San Francisco,
CA

Approved for Public Release; Distribution Unlimited

 25

6 List of Symbols/Abbreviations/Acronyms

AAM Active Appearance Model
AdaBoost Adaptive Boosting Algorithm
EM Expectation-Maximization
GMM Gaussian Mixture Model
IR Infra-Red
PDF Probability Distribution Function
PoG Point of Regard
PTZ Pan-Tilt-Zoom

Weka Waikato Environment for Knowledge Analysis

Approved for Public Release; Distribution Unlimited

 26

